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Summary 

A Norwegian research group has investigated the feasibility of constructing a system of underwater structures 
which would act like a lens and focus water waves prior to harnessing their energy. In the present work we 
consider modelling one of these structures by a horizontal, flat plate which is moored to the seabed. The water is 
assumed to be incompressible and inviscid and two-dimensional, linear, irrotational theory is used. Solutions to 
the scattering and radiation potentials are obtained by the method of matched eigenfunction expansions. 
Comparisons are made with various approximate solutions and results are presented illustrating the effect of 
varying the mooring stiffness in t~e cables on both the responses of the plate and the far-field wave motion. 

I. Introduction 

The  poss ib i l i ty  of  pe r fo rming  large-scale,  cost-effect ive ex t rac t ion  of  energy f rom the 
ocean  waves has received cons iderab le  a t ten t ion  over the last  two decades ,  mot iva ted ,  no  
doub t ,  by  the  desire  to ob ta in  a clean, renewable  energy source (see Evans  [3] for a review 
of  the theoret ical  aspects  of  the subject) .  In  par t icu lar ,  a Norweg ian  research group has 
inves t iga ted  the feasibi l i ty  of  cons t ruc t ing  a system of  unde rwa te r  s t ructures  that  would  
act  l ike a lens and  focus waves p r io r  to harness ing  their  energy (Meh lum and  S tamnes  [9]). 
Such a lens sys tem would  opera te  under  the same pr inc ip les  that  govern the focussing of  
l ight  waves. As  a wave enters  the shal lower  region over  a submerged  body ,  the wavelength  
is decreased  and,  as is wel l -known,  the wave speed is reduced.  Thus,  a phase  lag is induced  
in the t r ansmi t t ed  wave on the far side of  the body .  A water -wave  lens would  be 
cons t ruc ted  out  of  several  submerged  bodies ,  each of which is capab le  of  r e ta rd ing  a wave 
by  a di f ferent  amount .  

Each lens e lement  mus t  c lear ly  possess  the p r o p e r t y  that  it  reflects  very l i t t le  of  the 
inc iden t  wave, over  a wide range of  wave frequencies and  direct ions .  A no tab le  cand ida t e  
for  such an e lement  is the submerged  c i rcular  cy l inder  (Dean  [2], Ursel l  [17]), which is 
t r anspa ren t  to no rma l ly  inc ident  waves of  all frequencies,  and  this has indeed  cons idered  
b y  Meh lum [8]. To ta l  t ransmiss ion  of  no rma l ly  inc ident  waves pas t  o ther  bodies  does  also 
occur  but  in general ,  on ly  at  i so la ted  frequencies.  Examples  of  bodies  that  fall  in to  this 
ca tegory  are  long, two-d imens iona l  objects  ( N e w m a n  [12]) and  bod ies  of  rec tangula r  
cross-sect ion p laced  on the seabed  (Mei  and  Black [11]). 

* Present address: Department of Mathematics, University College London, London WCIE 6BT, UK. 

297 



298 

In addition, as the lens element would doubtless be moored in some way, it is necessary 
to determine how the reflection and transmission coefficients are affected by the motion 
of the element. It is also desirable, for cost purposes, that the elements should not be too 
bulky. In the present work, full linear theory is used to investigate the transmission of 
surface waves normally incident on a submerged, horizontal plate which is moored to the 
seabed. 

The scattering of waves, obliquely incident on a fixed, horizontal, thin plate of 
semi-infinite extent, was first studied by Heins [7] using a method based on the Wiener- 
Hopf  technique. His formulation enables the reflection and transmission coefficients to be 
given explicitly and simply, thus providing a valuable check, using a long-body approxi- 
mation, on the results for the fixed, finite plate. The Wiener-Hopf technique was used 
again by Burke [1] for the finite, horizontal plate in infinitely deep water. He obtained, as 
a limiting case, the results of Greene and Heins [5] for the semi-infinite plate in infinitely 
deep water. More recently, Patarapanich [13] has investigated the scattering of waves by a 
fixed, submerged, horizontal plate using a shallow-water approximation developed by 
Siew and Hurley [15]. He observed a marked oscillatory behaviour in the reflection 
coefficient, which he investigated by considering the energy flux around the plate. Zeros of 
reflection from a fixed plate which is deeply submerged were also observed by Grue and 
Palm [6] in their investigation of reflection of surface waves by submerged cylinders of 
various cross-sections. In a second paper [14] Patarapanich evaluated the force and 
moment on a fixed plate using a finite-element technique. This technique which may be 
used to solve for the flow round a wide class of geometries has the disadvantage that it can 
be computationally expensive to implement. In the present work, we prefer to use the 
method of matched eigenfunction expansions (see, for example, Evans and Mclver [4]) 
which is particularly suitable for rectangular geometries. 

The problem considered here is that of waves normally incident on a thin, horizontal 
plate of finite width which is submerged under the free surface and attached to the seabed 
by four vertical, elastic cables, symmetrically placed around the plate, as illustrated in 
Figure 1. As a first approximation, it is assumed that two-dimensional motion only need 
be considered as if, for example, the plate were in a narrow wave tank. It is also assumed 
that the presence of the cables does not affect the wave field. Linear theory is used, so that 
the velocity potential may be split into two fundamental parts: one due to the scattering of 
waves by the fixed plate and the other due to the radiation of waves by the moving plate 
into otherwise calm water. The full solution to both the scattering and radiation potentials 
is obtained by the method of matched eigenfunction expansions. 
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Figure 1. Definition sketch. 
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The problem is formulated in Section 2 where the usual linearised equations and 
boundary conditions to be satisfied by the scattering and radiation potentials are 
presented, on the assumptions of an inviscid, incompressible fluid and irrotational flow. 
The equations of motion of the plate are derived that determine its amplitude of 
oscillation in each mode of motion. In Section 3 the method of matched eigenfunction 
expansions is discussed and the solution for the scattering potential is given in detail. The 
modifications needed to solve for the radiation potential are also presented. Two systems 
of equations arise out of the matching and their numerical solution is described in Section 
4. 

In Section 5 results are presented that illustrate the variation of the reflection coeffi- 
cient from a fixed plate with wave frequency for a variety of plate widths and submer- 
gence depths. Comparisons are made with the results from a long-body approximation 
and also with the shallow-water results. In order to assess the importance of the energy 
flux above and below the plate, the full linear results are compared with those for a 
rectangular block on the seabed with the same height and width as the plate and a 
rectangular block on the surface with the same depth and width as the plate. For 
consistency, both these secondary problems are solved using the method of matched 
eigenfuction expansions although results based on a variational approximation are availa- 
ble in Mei and Black [11]. The influence of the plate motion on the wave field at large 
distances is discussed and results presented illustrating the effect of varying the mooring 
stiffness of the cables on both the responses of the plate and the amplitude and phase of 
the far-field wave motion. 

2. Formulation 

A two-dimensional cross-section through the plate is illustrated in Figure 2. Cartesian axes 
are chosen with the x-axis along the mean free surface and the y-axis pointing vertically 
downwards. The total depth of the water is denoted by h I and the depth of submergence 
of the plate by h 2. The ends of the plate are at x = _ a. 

The water is assumed to be incompressible and inviscid. Two-dimensional, linear, 
irrotational theory is used, so the motion may be described by a velocity potential, ~, 
which is written as 

(I) = Re[(q~ + dpr) e -i'~'] ( 2 . 1 )  
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Figure 2. Regions of separate eigenfunction expansions. 
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after making the further requirement that the motion be periodic in time, with period 
2~r/~o. 

The scattering potential, ~s, satisfies 

x7 2q~ = 0 in the fluid (2.2) 

with the boundary conditions 

~ , + - ~ - y = 0  on y = 0 ,  (2.3) 

where 

I¢ = o : 2 / g ;  (2.4) 

0q, s 
Oy = 0  on y = h  1, (2.5) 

0q,, 
0 y = 0  on y = h z , - a < ~ x < ~ a  , (2.6) 

and 

~s and ~ are continuous on x =  + a ,  (2.7) 

ensuring continuity of pressure and fluid velocity on x = ___ a. 
For a wave of amplitude A, incident on the plate from x = +o0,  the radiation 

condition 

q, ,-  
dp 0 cosh k , ( y  - h , ) l e  -ik'x + Re~k'x l 

~0Tcosh k l ( y  - h i )  e-ik, x 

a S X - - - - ~  o 0  
(2.8) 

a s  X "--* - - o ~  

must be satisfied, where 

-i~oA 
ki ' smh k a h  1 

and k l h  1 is the only real, positive root of the equation 

(2.9) 

Kh 1 = k l h  I tanh k l h  1. (2.10) 

The quantities R and T are the reflection and transmission coefficients, respectively. 
Using linearity, the radiation potential, g'r, is conventionally written as the sum of 

separate potentials, each of which is due to the plate moving in one of its modes of 
motion. Under the assumptions made, the only possible modes of motion of the plate are 
parallel to the y-axis, heave motion, and about what would be the z-axis, roll motion. 
Thus 

~r = --iw~3@3 -- i ~ 5 ~  5, (2.11) 
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where 

~',, = Re [ r/,, e -  i" ' ] ,  ot = 3, 5, (2.12) 

is the plate motion in the a-direction, and heave and roll motion are denoted by a = 3 and 
5, respectively. 

The potentials q~3 and 4~5 satisfy equations (2.2)-(2.5) and (2.7). The body boundary 
condition (2.6) is replaced by 

~)q'3 3_. = l y  on y = h 2 , - a < ~ x < ~ a ,  (2.13) 

and 

~q'5 = x  on y = h 2 , - a ~ x < ~ a .  (2.14) 3y 

The far-field behaviour of the potentials is governed by 

-ioaA + 
q~,, k ,  s i n h k l h l  c o s h k l ( y - h , ) e  ik~lxl as x---+ +_oo, a = 3 , 5 .  (2.15) 

The displacement amplitudes % are determined from the equations of motion of the 
plate. On account of the symmetry of the plate and mooring system, there is no coupling 
between heave and roll and the equations of motion are given by 

m , , ~ , ~ = - c , ~ , , + F d " + F ~ ,  a = 3 ,  5, (2.16) 

where rn 3 is the mass per unit length of the plate and m 5 the moment of inertia about the 
midpoint = m3a2/3;  c a is the net mooring stiffness per unit length and c 5 = ¢3 bE, where b 
is the distance between the point of cable attachment to the plate and the midpoint of the 
plate as defined in Figure 1; F f  is the exciting force or moment per unit length in the 
a-direction due to the waves scattered by the fixed plate; F~ is the radiation force or 
moment per unit length in the a-direction due to the motion of the plate. Conventionally, 
F~ is split into a component in phase with the velocity and a component in phase with the 
acceleration of the plate in the a-direction. Thus, 

F r = - a ~  - b ~ ,  (2.17) 

where a~ and b~ are the added-mass and damping coefficients respectively. Removal of 
the time dependence from (2.16) by writing 

Fe = Re[x~ e -i'~' ] (2.18) 

and using (2.12) yields the following formula for the displacement amplitudes: 

~ = X~ ( 2 . 1 9 )  
c,~ - oa2( m~, + a,~) + ioab,~ " 
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3. Method of solution 

Only the procedure for solving for ~ will be given in detail, as that for ~r follows in an 
analogous manner. 

The symmetry of the problem is exploited by splitting ~ into symmetric and antisym- 
metric parts. Thus 

+sCx, y)=¢Cx, y)++oCx, y) (3.1) 

where 

and 

¢(-x,  y)=+*(x, y), a¢ ax = 0  on x = 0 ,  (3.2) 

~ " ( - x , y ) = - ~ " ( x , y ) ,  ~ " = 0  on x = 0 .  (3.3) 

The fluid in the domain x >~ 0 is divided into three regions as illustrated in Figure 2. 
Region 1 is defined by x >~ a, 0 ~<y < h 1, region 2 by x <~ a, 0 <~y <~ h 2 and region 3 by 
x <~ a, h 2 <~ y <~ h 1. 

Complete sets of orthonormal eigenfunctions appropriate to each region and satisfying 
the boundary conditions given in (3.2), (2.5) and (2.6), are constructed (see e.g. Wehausen 
and Laitone [18], §16). The eigenfunctions appropriate to regions 1 or 2 are defined by 

c o s  k i , , ( y  - h i )  
~ i n -  Ni" , i = 1 , 2 ,  n = 0 , 1 , 2  . . . . .  (3.4) 

where ki, ,h i (i = 1, 2, n > 0) are the two infinite sequences of positive roots, taken in 
ascending order of magnitude, of the equations 

ich i = - k i n h  i t a n  k i n h  i .  (3.5) 

The quantities k~0 (i = 1, 2) are imaginary and defined by 

k i o  = - i k  i (3.6) 

where k ih  i are the only positive roots of the equations 

r h  i = k i h  i tanh k i h i ,  i = 1, 2. (3.7) 

The eigenfunctions appropriate to region 3 are defined by 

COS k 3 n ( y  - h i )  
~3n = N3 n , n = 0, 1, 2 . . . . .  (3.8) 

where 

nq'/" 
k 3 .  - h 2  _ hi , n = O, 1, 2 . . . .  (3.9) 
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The different form of the eigenvalues in region 3 reflects the fact that the uppermost 
boundary of that region is a rigid wall, rather than the free surface. 

The normalising factors 

sin 2k~.h~ ] 
N, 2=½ 1-~ 2 ~  ]'  i = 1 , 2 ,  n = 0 , 1 , 2  . . . . .  (3.10) 

and 

2 ( 1, n = 0 (3.11) N3"= ½, n > 0  

have been defined such that 

1 h, 
[ ~bi,,~bin = 8 .... i = 1, 2, (3.12) ni Jo 

and 

1 h I 
- h2 fh 2 ~P3"~3n = 8mn, ( 3 . 1 3 )  hi 

where 8,., is the usual Kronecker delta. 
The expansions of the symmetric and the antisymmetric parts of the velocity potential 

in each region are given by 

q}°Na°[½ e-ik':'4q° + ~" A~" e-*'"(x-a)+l"] 

cb s = @0N10 ~ A~, cosh k2nx~dzn, 
n=0 

dp°Nl°[As3°~P3° + ~ AS3n c°sh k3nxJ/3n] 

in region 1 

in region 2 (3.14) 

in region 3 

and 

dP°Nl°[½e-ik'xtPl°+~'A~"e-k'"(x-")~l"] ' n = o  

q,oNlo ~ A~, sinh k2nx~2n, 
n=0 

~oNlo A3oa~3O + A3. sinh k3nx~3n , 
n = l  

in region 1 

in region 2 

in region 3 

(3.15) 

The form of the expansions in (3.14) and (3.15) is 
condition (2.8) is automatically satisfied, on defining 

chosen so that the radiation 

R = [A~0 +AlaO] e - i k l a  ( 3 . 1 6 )  
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and 

T =  [A~o-Alao] e -ik'a. (3.17) 

The unknown coefficients, A~. and A~n (i = 1, 2, 3, n = 0, 1, 2 . . . .  ), are determined by 
ensuring continuity of potential and horizontal velocity on Ix I = a. 

Continuity of q: on I x I = a requires that 

½ e-ik'"~l 0 + £ A{,,~I, 
n = 0  

f •  A~. cosh k2naq'2., O ~ y ~ h2, 
n = O  

A~otP30+ ~ A~ncosh k3na~b3n, h2 <~ y <~ h 1. 
n = l  

(3.18) 

Multiplication of (3.18) by the orthonormal set (~2m(Y)} and integration over (0, h2) 
yields 

Az,.cosh k2ma =½ --ik,a~ ~.~ s " e CmO + A1.Cm., 
n = 0  

(3.19) 

where 

1 h2 

Cmo=-~2 fo ~2,,+,,dY, (3.20) 

whilst multiplication of (3.18) by the orthonormal set (lp3 m ( y ) )  and integration over (h 2, 
ha) yields 

A~., cosh k3,,,a = ½ e-ik:D,.o + ~. A~.D,, , . ,  m --/: O, (3.21) 
n = 0  

and 

oo 

A~o = ½ e-ik'aDoo + E A~,,Do,, (3.22) 
n = 0  

where 

1 L i ' ~ 3 m q , ' l n d y .  Dmn -- hi -- h 2 
(3.23) 
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Cont inui ty  of  3q, S/3x on I x [ = a requires that 

ikl  ~ ' 
2 e-ik'"lkl° -- kl"Al"q%' 

n=0  

{ ~ k2,,AS2,, sinh k2,,aq~2, ,, 0 <~ y <~ h 2, 
tl~O 

~k3nAS3, sinh k3,Ta~b3,, h2 ~<y ~< hi. 
n=0  

(3.24) 

Multiplication of  (3.24) by  the or thonormal  set (~3m(Y)) and integration over (0, hx) 
yields 

- ½iklh 1 e -ik'a + iklhlA~o = ~ kz.h2A~2, sinh kz.aC.o 
rt=0 

+ ~ k3,,(h x - h2)AS3,, sinh k3,,aD,, o (3.25) 
n = l  

and 

-kl,.hlA~m = ~ k2.h2AS2n sinh kz,,aC.. , 
n~O 

"~- £ k 3 n ( h  1 - h2)AS3n s i n h  k3,,aD,,,,,, m 4 : 0 .  ( 3 . 2 6 )  
n ~ l  

Substi tut ion of A~,, and A~,, f rom (3.19) and (3.21) into (3.25) and (3.26) yields the 
following system of equations for the A~,,: 

Fm~/ F20 • ½ e - i * ,  o AI,,,+ - , m 4 : 0 ,  
1=0 k l m h l  ~*ll kl,,,h 1 

( 3 . 2 7 )  

and 

[s] 
_ i A ~ o +  "or ~ ,  = _½ e-ik,,, Fo~ 

t=0 k'hl ~ v  k - ~  + i (3.28) 

where 

F,~,= ~ k2,,h 2 tanh k2naCnmCnl q- ~ k3n(h 1 -h2)tanh k3n(lOnmDnl, 
n~O n=l 

(3.29) 

Cont inui ty  of ,h a and Oq¢~/~x on [ x [ = a requires a second system of equations for the 
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A~',, to be satisfied, namely 

o ~  t l  a 

A ; .  + E=o . o  = r. o 
= k l . ,h l  "'11 klmh I ' m4:0,  

and 

*ol h a = 1 e - i kw 
/=oklhl  it [ k lh l  + i 

where 

oo 
F~I = ~.  k2 .h  a coth k2.aC.,,,C.i 

n=O 

( h  1 - h 2 )  
+ ,2., k3n(hl  - h2) coth k3naDnmDnl+ Do,,,Dot. 

n=l a 

The expansions for the radiation potentials ~3 and q~s are given by 

~ la A 3 o.-kln(x-a),f, 
| z~ , , l ~ l n ' . -  ~ l n ~  

I E h, A3" cosh kE.X~b2. + 

~3 [hlAao~b30 + ~_,=lhlA33. cosh ka.x+3 . 

+ (Y-h1) 2 - x  2, 

in region 1 

in region 2 

in region 3 

and 

~ /~2A5 o--kln(X-a),l , 
/ ~  '~ l~l ln  ~ Win,  

= ( y = )  

2 5 X dr- 2 5 • 
~5 l h l A 3 o - ~ b 3 o  n~=lhlA3n slnh k3nxhb3n 

I 3 x ( y - h l )  2 - x 3  
, 

in region 1 

in region 2 

in region 3 

where 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

~3 ( -x ,  y ) =  q~3(x, y) (3.35) 
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and 

* 5 ( - x ,  y ) =  -q~5(x, y ) ,  (3.36) 

since heave oscillations give rise to symmetric motion and roll oscillations to antisymmet- 
ric motion. Matching the potentials and horizontal velocity on x = a yields a system of 
equations for qb which has the same matrix but different right-hand side as that for q~s and 
similarly, a system for q~5 which has the same matrix but different right-hand side as that 
for ~ .  

4. Numerical procedure 

The systems of equations for A~,,, A~m , A~,, and A~,, are split into their real and 
imaginary parts and the resulting matrix equations are truncated at a suitable number of 
terms and solved using a standard N A G  library routine, (see e.g. Thomas [16]). It is worth 
noting that there is little extra expense involved in computing the radiation potentials q~3 
and q'5, in addition to the scattering potentials q~s and ~a, because the matrices appearing 
in the radiation problems are the same as those in the scattering problem. 

Care must be taken in performing the summations in (3.29) and (3.32). The quantity 
C,m has a factor k~,, - k~, in the denominator. For large m, ki ,  , oc mrr/hi, so the largest 
term in the first sum in (3.29) occurs when n = (h2 /h l )m  or (hz//hl)l. The quantity D,,,  
has a factor kZ3m- k 2. in the denominator and a similar analysis shows that the largest 
term in the second sum in (3.29) occurs when n = (h I - hz)m//hl or (h 1 - h z ) l /h  p Each 
summation must, therefore, be carried out well beyond the Nth  term, where for the first 
sum N = m a x ( h z m / h l ,  h z l /h l )  and for the second N = m a x ( ( h  1 - h 2 ) r n / h l ,  ( h i -  
h 2)l/h1). For fixed values of m and l, 

k2 ,k  2 tanh k2,,aC,,,,,C,t = O (n  -3)  as n ~ 

and 

k3. (h  , - h2) tanh k3.aD.,,,D., = 0 ( / ' / -3 )  as n ~ ~ ,  

so that to obtain satisfactory convergence, it is found in practice that the number  of terms 
in each series should be approximately equal to max(4N, 20). Consideration of the 
summations in (3.32) yields the same guideline to the number  of terms in each sum. A 
similar analysis was made by Evans and Mclver [4] in their work on edge waves. 

It  should be noted that the substitution of A~0 from (3.19) into (3.21) which yielded a 
term proportional to cot k2a in F~I, is not strictly valid at k2a = (2 j  + 1)¢r/2, where j is 
an integer. Similarly, there is a term in Fm~l proportional  to cot k2a which is infinite at 
k2a =j~r. A reformulation of the system of equations is possible that avoids the substitu- 
tion of A~0 from (3.19) into (3.21) at the expense of increasing the number  of unknowns in 
the system by one. This formulation includes the zero-order equation of (3.19) into the 
system and solves for A~0 directly. However, in practice, as double-precision arithmetic is 
used, k2a is very rarely close enough to (2 j  + 1)~r/2 to cause numerical problems in the 
original system of equations. 
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Figure 3. Different flow regions around a long plate. 

5. Results and discussion 

In Section 3 it was shown that the solution to the scattering and radiation potentials is 
determined from two, rather complicated, linear systems of equations. In such a case it is 
desirable, where possible, to check the validity of the numerical work by making 
comparisons with simple, approximate solutions. One approximation to the full linear 
solution of the scattering problem may be made when the plate width is large compared to 
the wavelength. This approximation, which was derived by Newman [12], assumes that 
there is a region above the plate, far from either end, in which the wavefield consists solely 
of two plane waves travelling in opposite directions, as illustrated in Figure 3. The 
amplitudes of these waves together with the reflection and transmission coefficients are 
determined by a suitable matching with the reflection and transmission coefficients for a 
semi-infinite plate. If one uses this approximation, the reflection coefficient is given by 

r_l_l+ e 2i(2k2a-kla) 
R = r+ e -2 ik ' a  q- (5 .1 )  

1 - r 2_ e 4ikza 

and the transmission coefficient by 

T -  t_t+ e zi(k2a-kla) (5.2) 
1 - / , 2  e 4 i k 2 a  ' 

where r± and t± are the reflection and transmission coefficients obtained when waves are 
normally incident from either infinity, on a semi-infinite plate. These are available in 
Heins [7], and (allowing for the difference in notation and correcting a few minor, 
typographical errors) are given by 

k 2 - k l  ] 
r+=  [ k2 + ka ] exp(2ia,) ,  (5.3) 

k I - k 2 ] 
r _ =  [ k, + k:  l e x p ( - 2 i a 2 ) ,  (5.4) 



t+ ( k , + k 2 )  ~2 [(kahl)Z-(gh,)  2 (kzh2)2+rhz-(ichz) z 

× exp i(o 1 - 02) 

and 

t - = ( k , + k 2 ) k h l ]  [(k2h2)2-(rh2) 2 (klhl)2+lchl-(~chl)2 J 

× exp i(o 1 - o2) 

where 

ol  [sinl /  1hl klh] 
n = l  [ ( k l n h 1 ) 2  +(klhl)211/2 rt~ 

+ 
n=l ((k2.h2)Z+(k,h2)2)W2 n~ 

+ 
~'~ i n - '  [(n~r) 2 + ( k l ( h l _ h 2 ) ) 2 ] ' / 2  n = l  

/q(h~-h2) 
HT/" 

and 

a2: [sinl I  2hl / 2h] 
°=, [ (~ , °h l )  2+(~2hl )2]  '"  . ~  

oo 

+E  k2h2 1/2 nor j 

sin-a [(n~r)2 +(k2(h2-hl))2] '/2 
k2(h~n~- h:)] 

hi In( h~ h2 

309 

(5.5) 

(5.6) 

(5.7) 

(5.8) 



310 

A second approximation based on the first-order, linear, shallow-water theory of Siew and 
Hurley [15] predicts the reflection coefficient to be 

[ h \~/2 
IR l=lXl l2k~as in2k2a-2[ : -~)  (1 - cos 2k2a) I 

where 

h,+h: } 
X = [ [ 2 [ h 2 ] ' / 2 ( 1 - c o s 2 k 2 a ) + 2 k l a h l  h2 sin2k2a  h,j 

(5.9) 

( 2k2a~'2 )]-1 
+2 i  sin 2kEa + hi _ h2 cos 2k2a (5.10) 

This approximation complements the long-body approximation as illustrated in Figures 4 
and 5 where both are compared with the full linear predictions for a plate of non-dimen- 
sional submergence depth h2/h 1 = 0.1 and width a/h 1 = 10 over two different frequency 
ranges. As expected, there is good agreement between the shallow-water and full theory 
over the lower frequency range but the two predictions diverge over the higher frequency 
range. The converse is true for the long-body approximation. 

Figure 6 illustrates the variation in I RI with frequency, for a fixed plate with 
non-dimensional submergence depth h2/h 1 = 0.1 and plate width a/h I = 0.5. In order to 
assess the relative importance of the energy flux above and below the plate, results are also 
plotted for a rectangular block on the seabed with the same width and height as the plate 
and for a rectangular block in the surface with the same width and depth as the plate. 
Both these secondary problems are solved using the method of matched eigenfunction 
expansions, the details for which follow in an analogous manner to the work already done 
in this paper. It is apparent that whilst the variation in I RI for the block on the seabed 
shows the same trend apart from the first zero, as that for the plate, the variation in J R I 
for the surface block is of markedly different character, being a monotonic increase with 
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Figure 4. Variation of t RI with wave frequency for h2/h I = 0.1 and a/h I =10. - - ,  full linear theory; 
. . . . . .  , shallow-water theory; -- -- --, long-body approximation. 
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, f u l l  linear theory; 

frequency. This suggests that for all but the lowest frequencies the predominant motion is 
above the plate rather than below. This in itself is perhaps not surprising as the 
incident-wave motion decays with depth, but a more interesting feature is that at low 
frequencies 0oh 1 << 1) there is sufficient energy flux beneath the plate to completely 
change the behaviour of I R I- 

As previously stated, it is important to determine how the magnitude and phase of the 
transmitted wave are affected by the plate motion. The far-field form of the total potential 
is given from (2.8) and (2.15) by 

f q~o[ A e -ik'x + ( RA - i~o~3A ~- - i~o-qsA ~- ) eik,x], 

COo(AT- i~on3Af - i~o~sA~- ) e-ik, x, 
(5.11) 
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Figure 6. Variation of [ R [ with wave frequency for a plate, ; a block on the seabed, - . . . . .  ; a n d  a block 
in the surface, - -  - -  - - .  I n  each case, h 2 / h  1 = 0 . 1  a n d  a / h  1 = 0 . 5 .  
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where 

i60 cosh k , ( y  - h , )  (5.12) 
4)0 = - kl sinh klh  1 

Various two-dimensional relations between the radiation and scattering problems may be 
deduced (Mei [10]), namely, the Haskind relations 

og2D`4A*~ 
Xa 

oJ 
(5.13) 

where 

D = tanh k lh  1 + k~hx sech2klhl, (5.14) 

the Newman relations, 

`4+ - R ( A + )  * - T ( A ; ) *  = O, (5.15) 

where * denotes complex conjugate, and the relations between the damping coefficients 
and the energy in the radiated waves, 

og2D . + 

b . = ~ l l A .  1 2 + I A 2 1 2 ) .  (5.16) 

It follows, using the equations of motion for %, (2.19), and the symmetry of the geometry 
which yields 

.4 3 = ` 4 ;  (5.17) 

and 

`4; = - ` 4 ; ,  (5.18) 

that (5.11) may be written as 

i~ob3(R + T)  ( ¢p0 A e -ik'x + e ik'x R -t _ ¢°2(m3 + 13) + c3 _ i¢°b3 

i ¢ ° b s ( R - T )  }] 

+ - ~02 ( m-s + a s---) + c---~ - i~0 b s ' 

i¢ob3(R + T)  
~boA e - i k ' x  T-t -¢°2(m3 + a 3 )  + c 3  _ i~°b3 

_ i~°bs } 

-(o2(m5 + as) + c  5 -  i~ob 5 ' 

X ----) OO ~ 

X "-') - - O O .  

(5.19) 
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Figure 7. Variation of the amplitude of the heave response with frequency for h 2 / / h  1 = 0.1 and a / h  1 = 1.0. 
- - ,  neutrally buoyant plate; . . . . . .  , s 3 = 10; - -  - -  - - ,  s 3 = 100. 

It is of interest to examine analytically the case in which the stiffness is chosen such that 
c a = to2(m~ + a , ) ,  a = 3, 5. The far-field form of the total potential at the frequency at 
which this is valid is given by 

[ ePoA(e-ik'X- Reik'x), x ~ oo (5.20) 

* -  [q ,0A( -  r )  e -'*'x, x--, - ~  

that is, the diffracted waves have the same magnitude but are 180 ° out of phase with what 
they would be if the plate were held fixed. This has important consequences as it provides 
a mechanism whereby, without changing the position and size of the plate, the phase shift 
in the transmitted wave may be altered by merely varying the stiffness of the mooting 
cables. A word of caution should be added here. The response motions of the plate, from 
(2.19) are 

Xa 
,/~ = a = 3 ,  5 .  ( 5 . 2 1 )  

c,~-to2(m,, + a,)-i tob,~ ' 

If the stiffness in the cables is chosen such that c a = to2(m~ + a~) and the damping b, is 
small, it is clearly possible to induce large motions in the plate, thus violating one of the 
assumptions on which this linearised theory is based. 

Figures 7 and 8 illustrate the effect of varying the stiffness and position of attachment 
of the cables on the heave and roll response of a plate with non-dimensional submergence 
depth hz /h  I = 0.1 and width a /h  1 = 1.0. The stiffness parameter in the figure captions, 
s,,  is defined by 

C3 
S3 = (5.22) pag 

and 

e5 (5.23) 
S 5 ~ pa3g 
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F i g u r e  8. V a r i a t i o n  o f  t he  a m p l i t u d e  o f  t he  rol l  r e s p o n s e  w i t h  f r e q u e n c y  fo r  h2//hl = 0.1 a n d  a / h  1 = 1 . 0 .  

- - ,  n e u t r a l l y  b u o y a n t  p l a t e ;  . . . . . .  , s 5 = 1.0; , s 5 = 9.0. 

The heave response is non-dimensionalised by the vertical-displacement amplitude of a 
water particle in the incident wave with mean depth equal to that of the plate. Similarly, 
the roll response is non-dimensionalised by the maximum steepness of the incident wave 
motion at that depth. Thus the non-dimensionalised responses of a neutrally buoyant  
plate, which should move with the waves at low frequency, should tend to 1.0 as Kh~ 
tends to zero, as indeed shown in Figures 7 and 8. In the calculations, the mass of the 
plate is taken as zero in order to be consistent with the assumption that the plate is 
infinitely thin. in practice, although this is clearly not true, it is a reasonable approxima- 
tion as the mass of the plate would generally be much smaller than its added mass. From 
the figures, it may be seen that if the plate is moored by very stiff cables, the motion is 
much reduced from the neutrally buoyant case whereas the choice of an intermediate 
stiffness parameter  enables the responses motions to be larger than those of the neutrally 
buoyant  plate over part  of the frequency range. The zeros in the heave response are 
associated with the zeros in the vertical exciting force and approximately correspond to 
the frequencies at which 2a/~. 2 = n, n = 1, 2 . . . . .  where 2t 2 is the wavelength over the 
plate. This is not surprising because when the plate width is an integral number of 
wavelengths, the contributions to the vertical force, considering the flow field above the 
plate only, cancel each other out when integrated over the top surface of the plate. It is not 
so clear how to interpret the zeros in the roll response except to say that they are 
associated with the zeros in the roll exciting moment.  

Ideally it would be desirable to have a plate and mooring system for which the 
reflection coefficient were zero and it were possible to choose the phase of the transmitted 
wave arbitrarily. Clearly this would be impossible, but it is necessary that the reflection 
coefficient should be small. Otherwise the aim of the water-wave lens, which is to 
concentrate the wave energy at one particular point, would be defeated. Figures 9, 11, 13 
and 15 illustrate the variation of the amplitude of the total reflection coefficient with wave 
frequency for a number of plates with different widths, submerged at the same depth, 
h2/h  1 = 0.1. Figures 10, 12, 14 and 16 show the corresponding phase of the transmitted 
wave, given between + and -~r. In each case the reflection coefficient has been plotted 
for a fixed plate (Ca/[oo2(ma + aa) ] >> 1, a = 3, 5), a neutrally buoyant  plate (Caf[coE(ma 
+ a~)] = O, a = 3, 5), and a plate with cables of medium stiffness. In each of the figures it 
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F i g u r e  9. V a r i a t i o n  o f  t h e  a m p l i t u d e  o f  t h e  to ta l  r e f l e c t i o n  c o e f f i c i e n t  w i t h  w a v e  f r e q u e n c y  f o r  h 2 / h  I = 0.1 a n d  

a / h  1 = 1.0. - - ,  f i x e d  p l a t e ;  . . . . . .  , n e u t r a l l y  b u o y a n t  p la te ;  - -  - -  - - ,  s 3 = 10.0 a n d  s 5 = 5.0. 

is clear that the neutrally buoyant  plate reflects very little of the incident wave over the 
lowest part  of the frequency range. Unfortunately, this is coupled with an almost zero 
phase lag in the transmitted wave which means that the plate does not affect the wave 
field much at all in this frequency range. In fact, it may be seen from the figures that 
whatever the stiffness of the cables, it is necessary that Kh~ should be greater than the 
value at which the first maximum is the reflection coefficient occurs before it is possible to 
obtain an appreciable phase lag in the transmitted wave coupled with a small reflection 
coefficient. In practical terms this means that the plate width should be at least half to one 
times the incident wavelength. Figure 9 shows that this is not a sufficient condition, 
however, as there are further large peaks in the reflection coefficient after the first 
maximum. Care must therefore be taken to ensure that the frequency range of interest is 
known before the configuration of the plate and mooring system is chosen. 
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F i g u r e  10. V a r i a t i o n  o f  t h e  p h a s e  o f  t h e  to ta l  t r a n s m i t t e d  w a v e  w i t h  w a v e  f r e q u e n c y  f o r  h 2 / h  1 = 0.1 a n d  

a / h  1 = 1.0. - - ,  f i x e d  p l a t e ;  . . . . . .  , n e u t r a l l y  b u o y a n t  p l a t e ;  - -  - -  - - ,  s 3 = 10.0  a n d  s 5 = 5.0. 
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F i g u r e  13. V a r i a t i o n  o f  t h e  a m p l i t u d e  o f  t h e  t o t a l  r e f l e c t i o n  c o e f f i c i e n t  w i t h  w a v e  f r e q u e n c y  f o r  h 2 ~hi = 0.1 a n d  
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F i g u r e  12. V a r i a t i o n  o f  t h e  p h a s e  o f  t h e  to ta l  t r a n s m i t t e d  w a v e  w i t h  f r e q u e n c y  fo r  h2/h  1 = 0.1 a n d  a /h l  = 0.5. 

- - ,  f i xed ;  . . . . . .  , n e u t r a l l y  b u o y a n t ;  - -  - -  - - ,  s 3 = 10.0 a n d  s 5 = 5.0. 
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F i g u r e  15. V a r i a t i o n  o f  the  a m p l i t u d e  o f  the  t o t a l  r e f l e c t i o n  c o e f f i c i e n t  w i t h  w a v e  f r e q u e n c y  for  h 2 ~hi  = 0.1 a n d  

a / h  I = 0.1. - - ,  f i xed  p l a t e ;  . . . . . .  , n e u t r a l l y  b u o y a n t ;  - -  - -  - - ,  s 3 = 10.0 a n d  s 5 = 5.0. 
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F i g u r e  16. V a r i a t i o n  o f  the  p h a s e  o f  the  t o t a l  t r a n s m i s s i o n  c o e f f i c i e n t  w i t h  w a v e  f r e q u e n c y  for  h 2 / / h i  = 0.1 a n d  

a / h  I = 0.1. - - ,  f i xed  p l a t e ;  . . . . . .  , n e u t r a l l y  b u o y a n t  p l a t e ;  - -  - -  - - ,  s 3 = 10.0 a n d  s 5 = 5.0. 
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6. Conclusion 

A Norwegian research group has demonstrated that a water-wave lens may be constructed 
out of a system of underwater structures. In this work we considered modelling one of 
these structures by a horizontal flat plate which is moored to the seabed. Numerical results 
for the full linear theory were checked against both a shallow-water and a long-body 
approximation and good agreement was obtained over each of their respective ranges of 
validity. A comparison was also made with the results for a fixed block on the seabed with 
the same height and width as the plate and for a fixed block in the surface with the same 
depth and width as the plate. The variation of the reflection coefficient for the block on 
the seabed showed the same trend, except at low frequencies, as that for the plate whilst 
that for the block in the surface was of markedly different character indicating that the 
wave motion was predominantly above the plate. 

The effect of the moorings on the response motions of the plate was examined and it 
was observed that whilst very stiff cables considerably reduced the motion of the plate 
from what it would be if it were neutrally buoyant,  it was possible, by choosing an 
intermediate stiffness parameter, for the response motion to be larger than that for the 
neutrally buoyant  plate over part  of the frequency range. It was also observed that the 
heave response of the plate was zero when the plate width was approximately an integral 
number  of wavelengths (referring to the wavelength over the plate) independent of the 
choice of stiffness of the cables. 

The effect of varying the mooring stiffness on the far-field form of the total potential 
was also examined and it was shown that by choosing the stiffness such that c a = t02(rn~ 
+ a~), a = 3, 5, both the total reflection and total transmission coefficients were 180 ° out 
of phase with what they would be for a fixed plate. Results were presented illustrating the 
variation of the amplitude of the total reflection coefficient and also the phase of the 
transmission coefficient with frequency and it was found that a necessary condition to 
obtain a small reflection coefficient coupled with an appreciable phase change in the 
transmission coefficient, was that the plate width should be at least half to one times the 
incident wavelength. 
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